Considerations of the mechanism of reductive deamination of primary amines with HNF₂

Carl L. Bumgardner^{a,*} and Joel F. Liebman^{b,*}

*Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204 (USA) *Department of Chemistry and Biochemistry, University of Maryland, Baltimore County Campus, Baltimore, MD 21228-5398 (USA)

(Received March 10, 1992; accepted December 14, 1992)

Abstract

A possible mechanism for the reductive deamination of primary amines $(RNH_2 \rightarrow RH)$ by HNF_2 is presented. The initial step involves bimolecular displacement of F from HNF_2 by RNH_2 . The subsequent series of intermediates proposed is supported by proton affinity data and literature analogies. The role of fluorine in affecting amine basicity is also delineated.

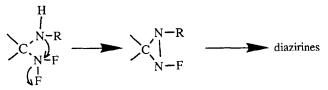
A number of years ago we noted that exposure of primary amines to HNF_2 resulted in reductive deamination [1].

 $3RNH_2 + HNF_2 \longrightarrow RH + N_2 + 2R\dot{N}H_3 + 2F^-$

If an optically active amine is used, the reaction proceeds with net retention [2]. Originally [1], we suggested a scheme involving fluoronitrene as a working hypothesis for the conversion of amines to alkanes, N₂ and RNH₃F. An alternative route beginning with S_N2 displacement of F from HNF₂ by RNH₂ was not excluded by the data.

Subsequent observations from several groups [3–5] regarding the reaction chemistry and thermochemistry of HNF_2 lead us to point out that this bimolecular process involving nucleophilic attack by RNH_2 on HNF_2 provides an attractive accommodation of the facts. We therefore suggest the following sequence – and accompanying precedents and commentary – to account for the reductive deamination of amines by HNF_2 .

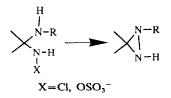
$$RNH_2 + HNF_2 \longrightarrow R \xrightarrow[H]{} H \xrightarrow[H]{} H \xrightarrow[H]{} F + F^-$$
(step 1)


Step 1, direct substitution, is consistent with the observations of Yap, Craig and Ward [3] who found that HNF_2 is attacked by a number of inorganic anions in a second-order process and that the reactivity pattern parallels the S_N2 order. An exception is OH⁻. This is the base used by le Noble and Skulnik [4] in a study

 (ΔV^{\dagger}) of the hydrolysis of HNF₂. Their evidence indicates that NF is generated by α -elimination of HF from HNF₂. These results may be reconciled by the hard and soft acids and bases (HSAB) approach to reactivity [6]: the relatively soft anions used by Yap *et al.* would be expected to participate readily in S_N^2 reactions with HNF₂, whereas the relatively hard (charged) strong base OH⁻ would prefer to abstract a proton from HNF₂. The uncharged, weak base RNH₂ is softer than OH⁻ and therefore amines would be expected to act as nucleophiles toward HNF₂ rather than as bases.

By analogy to many other examples of positively charged hydrogen-assisted X-F bond polarization and resulting heterolytic cleavage [7], we suggest that step 1 is autocatalytically assisted⁺ by the RNH₃⁺ reaction product. Noting that HNF₂ and OF₂ are isoelectronic, we recall the invocation of the isoelectronic reaction [7] to explain the literature reaction [9]

 $3RNH_2 + OF_2 \longrightarrow RNO + 2RNH_3^+F^-$


Graham's synthesis [10] of diaziridines represents an intramolecular case where an amine displaces a fluorine atom on another nitrogen atom, again with N-F bond cleavage assisted by polarization.

[†]For other examples of Lewis and/or Brønsted acid autocatalytic fluoride-displacement reactions, see ref. 8.

^{*}To whom correspondence should be addressed.

Analogous displacements on nitrogen are known to lead to diaziridine formation [11].

Evidence presented by Schmitz [11] indicates that such cyclizations occur via the $S_N 2$ route and do not involve a nitrene. Since these intramolecular cases do not utilize a nitrene intermediate, we suggest that the intermolecular counterpart shown in step 1 is likewise an $S_N 2$ process.

$$R \xrightarrow{H}_{H} \xrightarrow{H}_{F} \xrightarrow{H}_{F} + RNH_{2} \xrightarrow{H}_{F} \xrightarrow{H}_{F} \xrightarrow{H}_{F} + RNH_{3} \xrightarrow{F}_{F} \xrightarrow{H}_{F} \xrightarrow{H}_{$$

The proton transfer represented in step 2 is reasonable in view of the following observations. In the gas phase, alkyl amines RR'NH and the related hydrazines RR'NNH₂ have seemingly nearly identical basicities: more precisely, the proton affinities* of the amines NH₃, CH₃NH₂ and (CH₃)₂NH are 204.0, 214.1 and 220.6 kcal mol⁻¹, and of the corresponding hydrazines are 204.7, 214.1 and 219.9 kcal mol⁻¹. Hence, proton transfer between RNHNH₂ and RNH₂ should be thermoneutral. Intuitively, the replacement of an H atom on the NH₂ of the hydrazine by the electron-withdrawing fluorine should result in decreased basicity. For example, contrast the proton affinity of (CH₃)₃N with that estimated for (CH₃)₂NCH₂F.

(a) Linearly interpolate the proton affinities of $(CH_3)_3N$, 225.1 kcal mol⁻¹ and $(CH_3)_2NCF_3$, 193.8 kcal mol⁻¹, resulting in 214.7 kcal mol⁻¹.

(b) Use the literature proton affinity of $(CH_3)_2NCH_2CF_3$, 215.0 kcal mol⁻¹, and interrelate with $(CH_3)_2NCH_2F$ by either equation shown below from ref. 13:

$$PA(XCF_3) = 0.920PA(XF)$$

+ 13.597 ($n = 14, r = 0.9934$)

 $PA(XCF_3) = PA(XF) - 1.81 (\pm 3.16)$

These two equations result in a predicted proton affinity for $(CH_3)_2NCH_2F$ of 218.9 and 216.8 kcal mol⁻¹, respectively. A value of 217 ± 2 kcal mol⁻¹ is thus credible, and is certainly significantly less than that of the parent, unfluorinated, trimethylamine. We thus conclude that RNHNHF is expected to be meaningfully less basic than RNH_2 for any R group of interest.

The elimination in step 3 is another example of X-F bond polarization, and then heterolytic cleavage, by positively charged hydrogen. This reaction is 'driven' by formation of the comparatively strong nitrogen-nitrogen double bond and loss of the comparatively weak nitrogen-nitrogen single bond[†]. It is no doubt superfluous to comment that both here and elsewhere in our mechanism the RNH₂ and HF products of any step combine to form RNH₃⁺ F⁻.

Consistent with step 4 is the finding that the dialkyldiazene $CH_3N=NCH_3$ is considerably less basic than CH_3NH_2 (206.9 versus 214.1 kcal mol⁻¹). Since methylation generally increases proton affinities (cf. ref. 12), we thus conclude that CH_3NNH is considerably less basic than CH_3NH_2 , and assuming there is nothing 'special' about methyl, RNNH is likewise less basic than RNH₂.

Step 5a depicts an elimination involving a tight $RNH_3^+ F^-$ ion pair which would be expected to favor retention of configuration, the major stereochemical route. The separated ion-pair model shown in step 5b provides a route for the minor inversion pathway that results in 'H-R' instead of R-H.

We therefore conclude that steps 1-5 constitute a reaction scheme consistent with the available data on reductive deamination of primary amines by HNF₂ and is consonant with the reaction chemistry of other non-metal fluorides.

References

1 C.L. Bumgardner, K.J. Martin and J.P. Freeman, J. Am. Chem. Soc., 85 (1963) 97.

^{*}All proton affinity (PA) data in the current study have been taken from the evaluated data compendium and review [12].

[†]This is one of the 'bonding rules' for compounds of nitrogen, oxygen and fluorine, cf. ref. 14.

- 2 C.L. Bumgardner and V.R. Desai, J. Fluorine Chem., 36 (1987) 307.
- 3 W.T. Yap, A.D. Craig and G.A. Ward, J. Am. Chem. Soc., 89 (1967) 3442.
- 4 W. le Noble and D. Skulnik, Tetrahedron Lett. (1967) 5217.
- 5 A.A. Woolf, J. Fluorine Chem., 39 (1988) 1976.
 6 See, for example, I. Fleming, Frontier Orbitals and Organic
- Chemical Reactions, John Wiley & Sons, New York, 1976.
- 7 J.F. Liebman and T.H. Vanderspurt, J. Fluorine Chem., 2 (1972/3), 27.
- 8 R. Schmutzler, O. Stelzer and J.F. Liebman, J. Fluorine Chem., 25 (1984) 289.

- 9 R.F. Merritt and J.K. Ruff, J. Am. Chem. Soc., 86 (1964) 1392.
- 10 W.H. Graham, J. Am. Chem. Soc., 88 (1966) 4677.
- 11 E. Schmitz, Angew. Chem., Int. Ed. Engl., 3 (1964) 333; W.H. Graham, J. Org. Chem., 30 (1964) 2108.
- 12 S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin and W.G. Mallard, J. Phys. Chem. Ref. Data, 17 (1988) suppl. 1.
- 13 J.F. Liebman, in J.F. Liebman, A. Greenberg and W.R. Dolbier Jr. (eds.), Fluorine-containing Molecules. Structure, Reactivity, Synthesis and Applications, VCH Publishers, Inc., New York, 1988.
- 14 N.J.S. Peters and L.C. Allen, ref. 13, p. 200.